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The South China Sea (SCS) is the largest extensional basin in the western Pacific and was formed after
rifting of the Euro–Asian continental margin. The nature of its underlying mantle remains enigmatic
due to the lack of sampling of the seafloor’s igneous crust. The International Ocean Discovery Program
Expedition 349 cored seafloor basalts of the southwestern (Site U1433) and eastern (Site U1431) SCS
sub-basins. The recovered basalt samples exhibit different source lithologies and geochemistries. The
Mg isotopic compositions of seafloor basalts from these sites were investigated to elucidate the origin
of this large-scale mantle inhomogeneity. Results indicate that the Site U1431 basalts have a mantle-
like average d26Mg value of –0.27‰ ± 0.06‰ (2SD; n = 10). Together with inhomogeneous Sr–Nd–Pb–
Hf isotopic compositions, the Site U1433 basalts have an average d26Mg value (–0.20‰ ± 0.06‰; 2SD;
n = 8) higher than those of the Site U1431 basalts and normal mantle. Their heavier Mg isotopic
compositions and low 206Pb/204Pb ratios (~17.7) indicate that the Site U1433 basalts were affected by
the re-melting of detached continental-arc lithosphere in the sub-ridge mantle. The coupling of Mg
and Sr–Nd isotopes provides robust evidence that the mantle-like d26Mg values of the Site U1431 basalts
resulted from mixing between detached continental arc lithosphere and the nearby Hainan plume, with
respective supra- and sub-normal d26Mg values. From the perspective of Mg isotope, the mantles of the
southwestern and eastern sub-basins are compositionally inhomogeneous, with their mantle evolution-
ary histories being distinct.

� 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

The South China Sea (SCS), which covers an area of ~3.5 million
km2, is the largest marginal basin in the western Pacific and lies at
the junction of the Eurasian, Indian, Australian, and Pacific plates.
Its opening and evolution during the Cenozoic involved geody-
namic interactions between these major tectonic plates, the nat-
ures of which are still debated (Sun [1] and references therein).
The nature of the mantle domain beneath the SCS is poorly con-
strained due to a lack of samples of seafloor igneous crust. The
International Ocean Discovery Program (IODP) Expedition 349
drilled into the basement of the SCS oceanic crust, and recovered
mid-ocean ridge basalts (MORBs) from the southwestern (Site
U1433) and eastern (Site U1431) sub-basins for the first time [2]
(Fig. 1), aiding studies on the nature of the SCS sub-ridge mantle
[3–10].

The lithologies of basalts from sites Site U1431 and Site U1433
involve predominantly normal (N) and enriched (E)-MORB, respec-
tively. These MORBs have distinct geochemistries [3,4]. In this
study, basalt Mg isotopic compositions provide novel perspectives
of mantle compositional evolution in the SCS. Comprehensive and
robust datasets concerning the compositions of diverse terrestrial
reservoirs are available [11], enabling the use of Mg isotopic com-
positions of volcanic rocks in tracing surficial materials recycled to
the deep mantle. Ocean-island basalt (OIB)-type rocks usually
exhibit considerable compositional variability, with d26Mg values
of –0.6‰ to –0.3‰ [12–16]. The Mg isotopic compositions of
MORBs are relatively homogeneous, with a mean d26Mg value of
–0.25‰ ± 0.06‰ (2SD; n = 47; Teng et al. [15]), which is identical
y mag-
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Fig. 1. Bathymetric map showing the South China Sea (SCS) and surrounding area.
White curves and triangles denote subduction zones and direction, respectively.
Yellow dotted line outlines the deep-water basin of the SCS. Red double-dashed line
indicates the fossil spreading ridge, and single-dashed line the Zhongnan Fault,
which divides the SCS basin into eastern and southwestern sub-basins. Numbers
below site names indicate ages of drilled oceanic crust (Ma) [2]. Base map and
bathymetric data are from http://www.geomapapp.org/.
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to that of normal mantle (d26Mg = –0.25‰ ± 0.04‰; Teng [11]),
although such a constraint on MORB d26Mg values may be due to
a small dataset. Here we undertook, for the first time, Mg isotope
analyses of fresh basalt samples from sites Site U1431 and Site
U1433, with the aim of elucidating the origin of the large-scale
mantle compositional heterogeneity of the SCS.
2. Geologic setting and samples

The SCS began opening at ca. 33 Ma and the subsequent seafloor
spreading ceased at ca. 16 Ma [2]. The SCS includes four sub-
basins: the northeastern, northwestern, eastern, and southwestern
sub-basins (Fig. 1). The eastern and southwestern sub-basins are
separated by the Zhongnan Fault and constitute the main SCS
deep-water basin. Seafloor magnetic records indicate that the
oceanic crust of the largest (eastern) sub-basin was accreted in
N–S spreading during 33–16 Ma, and the V-shaped southwestern
sub-basin was formed later by NW–SE spreading at 23.6–16.0 Ma
[2].

The IODP Expedition 349 recovered igneous basement from Site
U1431 (‘‘Hole E”) in the eastern sub-basin and Site U1433 (‘‘Hole
B”) in the southwestern sub-basin, with the former being adjacent
to the fossil ridge of the eastern sub-basin. Two independent basalt
layers at 890.0–962.5 and 972.0–1007.9 m below seafloor (mbsf)
were identified at Site U1431. The upper layer comprises sheet
lavas containing abundant olivine cumulates, and the lower layer
contains both sheet and pillow lavas with more limited crystalliza-
tion of olivine [3]. At Site U1433, basalts appear at 786.3–858.5
mbsf as pillow lavas and massive lava flows with variable plagio-
clase phenocryst contents and minor olivine microphenocrysts
[8] (Fig. S1 online).

Chondrite-normalized (La/Sm)N ratios (based on normalization
values of Anders and Grevesse [17]) indicate that seafloor basalts
at Site U1431 include a large percentage of N-MORBs [(La/
Sm)N = 0.52–0.71] and relatively rare E-MORBs [(La/Sm)N = 1.29],
whereas those at Site U1433 are all E-MORBs [(La/Sm)N = 1.00–1.
2

02]. Compared with MORBs at Site U1431, those at Site U1433
are slightly more depleted in Sr–Nd–Hf isotopes and enriched in
unradiogenic Pb isotopes, with respective means as follows:
87Sr/86Sr = 0.7031 and 0.7030; eNd = 7.84 and 8.93; eHf = 11.82
and 15.16; and 206Pb/204Pb = 18.47 and 17.69 [3,4]. In this study,
ten seafloor basalt samples from Site U1431 and eight from Site
U1433 were analyzed for Mg isotopes.

3. Methods

The Mg isotope analyses were respectively undertaken at the
CAS Key Laboratory of Crust–Mantle Materials and Environments
at the University of Science and Technology of China (USTC), and
the Institute of Geology and Geophysics, Chinese Academy of
Sciences (IGGCAS), following procedures described by An et al.
[18] and summarized here. Rock sample and standard powders
were weighed into Savillex screw-top beakers and dissolved in
HF–HNO3. The digestion residue was repeatedly evaporated with
HCl–HNO3 and HNO3 and finally dissolved in 2 mol/L HNO3 for col-
umn chemistry. Mg purification was achieved by cation exchange
using 2 mL Bio-Rad AG50W-X12 resin (200–400 mesh), with the
column procedure being repeated. Mg recoveries for samples and
standards were �99.7% and the total procedural Mg blank
<10 ng. Mg isotopic compositions were determined by multi-collec
tor–inductively coupled plasma–mass spectrometry (MC–ICP–MS;
Thermo-Finnigan Neptune; USA) using the sample–standard
bracketing technique under wet plasma conditions. Samples were
analyzed at least in triplicate, and results are expressed in the d
notation relative to the DSM3 standard (an Mg standard solution
made from pure Mg metal [19]):

dXMg ¼ XMg=24Mg
� �

sample
= XMg=24Mg
� �

DSM3
� 1

� �
� 1000%;

ð1Þ
where X = 25 or 26. Long-term reproducibility and accuracy (at both
laboratories) were better than 0.06‰ (2SD) for d26Mg.

4. Results

The Mg isotopic compositions of SCS seafloor basalts and stan-
dards determined in this study are listed in Tables S1 and S2 (on-
line), respectively (see also Fig. S2 online), with the latter being
consistent with reference values reported by An et al. [18].
Table S1 (online) also includes critical previously published data
[3,4], which are covered more widely in Table S3 (online).

The d26Mg values of the Site U1431 basalts range from –0.32‰
to –0.23‰ (average –0.27‰ ± 0.06‰; 2SD; n = 10), overlapping the
normal mantle value of –0.25‰ ± 0.04‰ [11]. The Site U1433
basalt d26Mg values range from –0.24‰ to –0.15‰ (average
–0.20‰ ± 0.06‰; 2SD; n = 8). A two-tailed t-test confirmed that
the two sets of values are significantly different (P < 0.01 at 95%
confidence level). Furthermore, the high-d26Mg endmember of
the Site U1433 basalts (d26Mg = –0.15‰ ± 0.02‰; 2SD) is beyond
the normal mantle range (Fig. 2).

5. Discussion

5.1. Unusual d26Mg values of Site U1433 basalts

The d26Mg values of the Site U1433 basalts are systematically
higher than those reported previously for fresh MORBs globally
(–0.25‰ ± 0.06‰; 2SD; n = 47; [15]). Non-mantle-like d26Mg val-
ues of oceanic crust basalts are commonly attributed to seawater
alteration and/or sediment contamination [20–23]. The unusual
d26Mg values of the Site U1433 basalts are coupled with anomalous

http://www.geomapapp.org/


Fig. 2. d26Mg–MgO diagram for SCS MORBs highlighting the difference between the
Site U1431 and Site U1433 basalts. The terrestrial mantle range (gray shaded) is
from Teng [11]. The horizonal olivine accumulation trend of Site U1431 MORBs
indicates olivine crystallization will not lead to Mg isotopic fractionation in the
residual melt. Error bars represent 2SD uncertainties.

Fig. 3. Frequency distributions for Mg isotopic compositions of diverse terrestrial
reservoirs. The range of d26Mg values was adjusted and some data excluded to
optimize visual effectiveness. The colored curves are probability density functions
calculated by MATLAB (R2018b). Grey-shaded and lined areas show the ranges of
normal mantle [11] and Site U1433 MORBs. Data sources are: lower continental
crust (LCC) granulites [24,25]; subcontinental lithospheric mantle (SCLM) peri-
dotites [15,26–32]; sub-arc peridotites [28,33,34]; arc lavas [12,35] and abyssal
peridotites [36].
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Pb isotopic compositions (Fig. 3). The following discussion consid-
ers whether the Mg isotopic compositions of the Site U1433
MORBs mirror upper-mantle sources or are masked by post-
eruption weathering.

Altered oceanic crust samples (uncontaminated by sediment)
have an average d26Mg value of –0.18‰ ± 0.13‰ (2SD; n = 73), with
greater variability and a slightly higher average value than fresh
samples [20–22]. Chemical weathering residues usually have high
d26Mg values because secondary clay minerals preferentially scav-
enge heavy Mg isotopes from surrounding fluids [37], elevating
d26Mg values of the altered basalts [38]. However, sample pho-
tomicrographs (Fig. S1 online) indicate that alteration of the Site
U1433 basalt samples is negligible. This is further indicated by
all of these basalts having (1) fairly low loss on ignition values
(LOI < 1.5 wt%) and uniform chemical index of alteration values
(CIA; molar Al2O3/(Al2O3 + CaOsilicate + Na2O + K2O) of 38.1–39.2;
and (2) correlated alteration-sensitive/insensitive pairs of trace
elements such as Th–U and Nb–Ba, which tend to be strongly
decoupled in altered MORBs [39] (Fig. S3 online).

Magma differentiation may also cause a slight d26Mg shift (e.g.,
Schiller et al. [40]). However, high-MgO Site U1431 MORBs
(MgO > 10.0 wt%) with strong olivine cumulation have a mean
d26Mg value of –0.28‰, whereas the low-MgO Site U1431 MORBs
(MgO < 10.0 wt%) have more uniform d26Mg values (mean
–0.26‰ ± 0.04‰; 2SD; n = 6). The identical Mg isotopic composi-
tions of these two groups indicate that olivine cumulation and/or
fractionation cannot cause a resolvable d26Mg deviation from the
host magma. This is in consistent with the fractionation behaviors
of Mg isotopes observed in Hawaiian Kilauea Iki lavas [41].

Partial melting tends to fractionate Mg isotopes between melt
and residual mantle sources in different molten mineral assem-
blages [22,42]. MORBs are high-degree partial melts typically
formed in the spinel stability field of peridotitic mantle. Spinel is
one of the major peridotite phases enriched in heavy Mg isotopes
[30,31,43], so the fractionation effect on MORBmagma of the melt-
ing of spinel peridotite requires consideration. We adopted the
modelling method of Zhong et al. [22] and Williams and Bizimis
[44] to investigate whether the melting of spinel-face peridotite
could explain the elevated d26Mg values of the Site U1433 MORBs
(modelling parameters are summarized in Table S4 online). Results
indicate that the d26Mg values of melts are positively correlated
3

with the degree of melting, with low-degree melts being slightly
enriched in light Mg isotopes (Fig. S4 online). This is due to spinel
being only a subsidiary mineral phase in peridotite, with clinopy-
roxene therefore contributing overwhelmingly to the melt [45].
The model results apparently conflict with the positive SCS MORB
trend in the d26Mg–(La/Sm) diagram (Fig. S4 online), which
indicates the Site U1433 E-MORBs, rather than the Site U1431
N-MORBs, are enriched in heavy Mg isotopes. We therefore con-
sider that the difference between the Site U1431 and Site U1433
MORBs was not caused by partial melting of spinel peridotite.
Having thus excluded the influence of seafloor weathering, mantle
melting, and magmatic processes, we suggest that the unusually
heavy Mg isotopic signature of the Site U1433 basalts was inher-
ited from their mantle source.
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5.2. The origin of the high-d26Mg Site U1433 basalts

The supra-mantle d26Mg values of the Site U1433 basalts were
likely caused by the involvement of recycled components in their
source, as they also have notable unradiogenic 206Pb/204Pb ratios
(17.59–17.70) relative to MORBs of the East Pacific Rise (EPR; mean
206Pb/204Pb = 18.4; [46]). The origin of such Indian-type Pb isotopic
signatures (the ‘‘DUPAL anomaly” [47,48]) is still debated, with
plausible suggestions including recycled pelagic sediments associ-
ated with oceanic crust [49], delaminated subcontinental litho-
spheric mantle (SCLM) [50,51], or lower continental crust (LCC)
[52–54].

Ancient pelagic sediments are often considered possible source
components for the mantle endmember ‘‘Enriched Mantle 1”
(EM1), with very low 206Pb/204Pb ratios [55]. These sediments have
d26Mg values that vary from heavy to light, depending on whether
their predominant endmember is clay- or carbonate-rich [56,57]. A
recent study of typical EM1-type Pitcairn shield lavas found that
these ocean-island basalts (OIBs) with low 206Pb/204Pb ratios also
have abnormally low d26Mg values of –0.40‰ to –0.31‰, unlike
the Site U1433 basalts [14]. Therefore, the unradiogenic Pb isotopic
signature of the EM1 endmember is more likely associated with
carbonate-bearing pelagic sediments, which would preserve light
Mg isotopic signatures [57] even after being subducted into the
deep mantle [58]. The differences in d26Mg values between the Site
Fig. 4. d26Mg value versus whole-rock (a) CaO/Al2O3, (b) Fe/Mn, (c) Ba/Nb and (d) Th/Th*
the normalized value with respect to the primitive mantle [62]. The average Mg isotopic
[46]. To reduce uncertainties in major-element and isotopic compositions caused by magm
(SiO2 < 55 wt%) are plotted [35]. Shaded columns in (b) indicate the range of Fe/Mn rat
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U1433 MORBs and the Pitcairn lavas imply that carbonate-bearing
pelagic sediments cannot account for the low 206Pb/204Pb ratios of
the former.

Previous studies of Mg isotopic compositions of SCLM and LCC
xenoliths have found that both may have subnormal d26Mg values
associated with varying degrees of metasomatism (e.g., Pogge von
Strandmann et al. [28]) However, only extensively metasomatized
samples could have abnormal d26Mg values, and these are minor
reservoir components. Most SCLM peridotites and LCC granulites
have mantle-like d26Mg values, as the compiled dataset shows
(Fig. 3). The Mg isotopic composition of melt generated by a high
degree of melting should resemble the average value of the bulk
source (also see Fig. S4 online), and the Site U1433 basalts would
inherit mantle-like d26Mg values even if they were derived from
mantle containing SCLM or LCC components. Therefore, we suggest
that neither SCLM nor deep continental crust were responsible for
the supra-normal d26Mg signatures of the Site U1433 basalts.

For a given MgO content, the Site U1433 basalts have higher
CaO contents and CaO/Al2O3 ratios, and lower Fe2O3 contents, than
the Site U1431 basalts (Fig. S5 online). Such differences in major-
element composition suggest that the mantle source of the Site
U1431 MORBs is peculiarly pyroxenitic (as also indicated by its oli-
vine composition [3]), whereas the Site U1431 MORB source is nor-
mally peridotitic. This source lithological heterogeneity is also
reflected in bulk-rock Fe/Mn ratios [59,60]. The negative
ratios for SCS MORBs. Th/Th* = 2 � ThN/(BaN + LaN), where the subscript N denotes
composition of EPR MORBs is from Teng et al. [15]; other data are from Gale et al.
a differentiation and source contamination, only low-silica Martinique arc samples

ios in oceanic basalts of different source lithology [63].



Fig. 5. Comparison between d26Mg values of MORB samples from global oceanic
ridges [15] and the SCS (this study). Shaded backgrounds indicate the correspond-
ing mean d26Mg ± 2SD for each group, as also shown on the right. EPR = East Pacific
Ridge, MAR = Mid-Atlantic Ridge, IR = Indian Ocean Ridge.
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CaO–MgO correlation (Fig. S5 online) suggests that the fractionated
mineral phase of the analyzed Site U1431 and Site U1433 MORBs is
dominated by olivine. Their bulk-rock Fe/Mn ratios are thus con-
trolled primarily by source lithology, rather than magmatic differ-
entiation [61]. The d26Mg–(CaO/Al2O3) and d26Mg–(Fe/Mn)
diagrams (Fig. 4a, b) indicate that the Site U1433 MORBs have high
CaO/Al2O3 and low Fe/Mn ratios, similar to those of EPR MORBs
[46]. The relatively heavy Mg isotopic composition is thus a com-
mon and inherent feature of the mantle peridotite tapped by the
Site U1433 basalts.

The Mg isotopic compositions of lavas from the Martinique arc
are generally heavier than that of normal mantle (mean d26Mg
= –0.18‰ ± 0.07‰; 2SD; n = 26; [35]), implying that the sub-arc
mantle is a plausible high-d26Mg peridotitic source for the Site
U1433 basalts. Globally, island-arc basalts also have variable
d26Mg values with a slightly supra-normal average of –0.19‰ ±
0.25‰ (2SD; n = 29) [12,35]. On the other hand, sub-arc peridotites
display limited d26Mg variation from normal mantle to higher end-
member values [28,33,34] (Fig. 3). Inter-arc Mg isotopic hetero-
geneity has been attributed to high-MgO fluids derived from
high-d26Mg altered abyssal peridotites (Liu et al. [36]) (Fig. 3),
rather than sediment-derived fluids, causing elevation of d26Mg
values of the sub-arc mantle, as the latter are normally low in
Mg content [64]. We infer that subduction zones exclusively pro-
duce large-scale heavy Mg isotopic anomalies in the upper mantle,
given that (1) fluids released from the subducting slab commonly
have d26Mg values above the normal mantle value, even though
they are derived from subducting sediments [35,65], altered ocea-
nic crust [66], or altered peridotites [67,68]; and (2) the interaction
between slab-derived fluids and overlying mantle wedge must be
secular and coherent to sufficiently elevate d26Mg values of high-
MgO sub-arc peridotites.

Trace-element systematics of SCS MORBs exhibit higher Ba/Nb
and lower Nb/Th ratios than those of EPR MORBs [46] and average
depleted MORBmantle (DMM) [69] (Fig. S6 online). Such Ba and Th
enrichment of their mantle source is consistent with the conse-
quences of subduction modification [70], as clearly exemplified
by seafloor basalts from the Lau back-arc basin [46] (Fig. S6 online).
The d26Mg–(Ba/Nb) and d26Mg–(Th/Th*) diagrams (Fig. 4c, d) fur-
ther indicate that, barring only one Site U1431 sample (Site
U1431E-38R-1-W 43/46), SCS MORBs exhibit positive correlation
between d26Mg and Ba/Nb (r2 = 0.29) and Th/Th* (r2 = 0.46). The
supra-normal d26Mg values and peridotite-derived bulk-rock
CaO/Al2O3 and Fe/Mn ratios, and subduction-modified Ba and Th
excesses in the Site U1433 MORBs have also been found in
low-SiO2 (SiO2 < 55.0 wt%) Martinique arc lavas [35] (Fig. 4). We
therefore infer that the elevated d26Mg values of Site U1433 basalts
originated from the sub-arc peridotitic mantle beneath the SCS
southwestern sub-basin.

Recycled arc mantle relicts have recently been recovered from
the Mid-Atlantic Ridge [71]. Although such components may con-
stitute a major part of the upper mantle by volume, these highly
refractory mantle domains are considered to contribute little to
mantle melting [71], consistent with the observation that there is
no resolvable difference in d26Mg values between MORBs of the
Pacific, Atlantic, and Indian oceans (Fig. 5). Compared with mature
ocean basins with seafloor-spreading histories of >100 Ma, the SCS
southwestern sub-basin is a juvenile oceanic basin (24–16 Ma;
[2]). The relatively high d26Mg values recorded in oceanic crust of
this sub-basin thus indicate that the recycled sub-arc lithosphere
is not refractory and could generate high-d26Mg melt during man-
tle melting in the initial spreading stage (Fig. 5), and all Site U1433
basalts being E-MORBs is consistent with preferential melting of
enriched and fusible components. The Mg isotopic compositions
of MORBs that formed during the initial extension stage could thus
5

preserve precise information concerning recycled lithospheric
components.

5.3. Distinct Mg isotopic signatures of the two sub-basins

Our statistical testing (Section 4) confirms a systematic differ-
ence in Mg isotopic composition between the Site U1431 and Site
U1433 MORBs of the SCS eastern and southwestern sub-basins,
respectively. The lower mean d26Mg value of the Site U1431
MORBs is also coupled with geochemical (i.e., Sr–Nd–Hf–Pb iso-
topes; Fig. 6) and lithological heterogeneity between mantle
domains of the two sub-basins. The Site U1431 MORBs generally
have slightly more enriched Sr–Nd–Hf isotopic compositions and
more radiogenic Pb isotopic compositions (mean 87Sr/86Sr = 0.7031;
eNd = 7.84; eHf = 11.82; 206Pb/204Pb = 18.47) than the Site U1433
MORBs (0.7030; 8.93; 15.16; 17.69, respectively) [4]. Based on
the measured olivine compositions of the Site U1431 basalts,
Zhang et al. [3] suggested that they were derived from an exotic
pyroxenite-rich mantle source. This is also revealed by the rela-
tively low bulk-rock Fe/Mn of Site U1431 MORBs (Fig. 4b). These
multiple lines of evidence indicate that the lighter Mg isotopic
compositions of the Site U1431 MORBs may be inherited from a
recycled low-d26Mg source component, in which Sr–Nd–Hf iso-
topic compositions are more enriched and Pb more radiogenic than
in the southwestern sub-basin mantle.

The compositional difference between MORBs of the two SCS
sub-basins may be due to the influence on the SCS sub-ridge



Fig. 6. d26Mg value versus radiogenic Sr–Nd–Pb–Hf isotopic compositions (indicated by 87Sr/86Sr, eNd, 206Pb/204Pb, and eHf values) for SCS MORBs. EPR MORB data are from
Teng et al. [15]. Mg and Sr–Nd data for Hainan-Leizhou (HNLZ) tholeiites in (a) and (b) are from Li et al. [12]. The green-shaded areas in (c) and (d) illustrate the means ± 2SD
ranges on Mg–Pb–Hf isotopes of HNLZ tholeiites. The corresponding Pb and Hf isotopic data for the HNLZ samples with Mg isotopic compositions are absent and here we use
the compiled data from Tu et al. [72], Zou and Fan [73], Wang et al. [74], and Sun et al. [75] instead. Mg and Pb isotopic compositions of Pitcairn shield lavas are from Wang
et al. [14]. Purple curves and shaded areas in (a) and (b) depict the melt–melt mixing trends between the Site U1433 MORB (67R-1-W 55/58), HNLZ tholeiite (08HN-5C) and
the average EPR MORB with 10% intervals (calculation parameters are given in Table S5 online).
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mantle of a pyroxenite-rich mantle source feeding the intraplate
Hainan hotspot (Fig. 1) [3]. The Hainan hotspot where volcanism
commenced in the Hainan–Leizhou (HNLZ) area during the late
Oligocene (28.4 Ma) [76], was much closer to Site U1431 than
16 Ma ago, so the HNLZ source component could have contributed
to SCS MORB magmatism via plume–ridge interaction [3]. In that
case, the enriched component of the eastern sub-basin mantle
could have been constrained by voluminous post-spreading lavas
in the HNLZ region. Previously published isotopic data indicate
that post-spreading HNLZ basalts have Sr–Nd–Pb–Hf–Mg isotopic
compositions of 87Sr/86Sr = 0.7030–0.7049, eNd = 2.3–8.0, 206Pb/
204Pb = 18.39–18.77, eHf = 5.5–12.0, and d26Mg = –0.31‰ to –
0.58‰ [12,72–75]. These isotopic signatures also support the HNLZ
component being a geochemically appropriate endmember
accounting for compositional distinctions between the Site
U1431 and Site U1433 MORBs. The Site U1431 and Site U1433
basalts and HNLZ tholeiites are strongly correlated in d26Mg–
87Sr/86Sr, eNd, 206Pb/204Pb, and eHf diagrams (Fig. 6). Each plot in
Fig. 6 shows that the Site U1433 basalts and HNLZ tholeiites com-
prise the high- and low-d26Mg endmembers with coupled
endmember-like Sr–Nd–Hf–Pb isotopic signatures. The Site
U1431 basalts always occupy intermediate positions in these plots,
indicating that their mantle-like d26Mg signatures result from mix-
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ing of sub-arc peridotitic mantle (Site U1433 basalts) and pyrox-
enitic carbonated materials entrained in the Hainan hotspot
(HNLZ tholeiites). A simple melt–melt mixing model applied
between three endmembers (i.e., representative Site U1433 and
Hainan samples and average EPR MORB) is also consistent with
the covariation of Mg and Sr–Nd isotopic composition (Fig. 6a, b;
mixing parameters are given in Table S5 online).

In summary, the Mg isotopically heavy sub-arc-type mantle
inferred from the Site U1433 basalt compositions is the predomi-
nant endmember beneath the whole SCS basin, and the geochem-
ical difference between sub-basins may be explained by extra
injection of Hainan plume components into the mantle domain
of the eastern sub-basin.

5.4. Pb–Mg isotopic anomaly associated with asthenosphere-
lithosphere interaction

A mantle domain with low 206Pb/204Pb ratios and high d26Mg
values (a common source endmember for SCS MORBs; Fig. 6) is
consistent with the involvement of the buried root of a continental
magmatic arc. Such an arc root has two components: a minor LCC-
like component [4] that deposits abundant sulphides [77,78] to
preserve unradiogenic Pb isotopes, and the sub-arc peridotitic
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mantle with elevated d26Mg values. The low-MgO LCC-like compo-
nent may have trace-element contents several orders of magnitude
higher than those of high-MgO peridotites, producing a large-scale
isotopically anomalous Pb domain retaining arc-type Mg isotopic
signatures after sinking into the asthenospheric mantle.

Fragments of subduction-modified lithospheric mantle have
been suggested as a possible low-206Pb/204Pb source for MORBs
of the Southwest Indian Ridge [51]. A similar model involving
delaminated continental arc root has been proposed to explain
the occurrence of low-206Pb/204Pb volcanic glasses along the EPR
[79]. Based on enrichment in mobile elements (Fig. S6 online),
Richter et al. [80] identified an ancient subduction-modified
mantle source for MORBs of Gakkel Ridge, Arctic Ocean. where
206Pb/204Pb ratios are also relatively low (~18.0). The heavy Mg iso-
topic compositions of fresh SCS MORBs provide convincing support
for this hypothesis from an Mg isotopic perspective.

The compositional complexity of subduction-modified mantle
wedge means that arc remnants may be an overlooked source of
various types of geochemical imprint (other than unradiogenic
Pb isotopes) for the sub-oceanic mantle, as partially validated by
abnormal Li isotopic ratios of EPR basalts [81]. Globally, E-MORB
sources generally carry sedimentary Ba isotopic compositions
[82], and this Ba isotopic anomaly could also be preserved within
the sub-arc mantle fluxed by enormous amounts of sediment-
released fluids.

6. Concluding remarks

The Mg isotopic composition of the sub-ridge mantle of the SCS
is heterogeneous on a sub-basin scale, consistent with the occur-
rence of radiogenic Sr–Nd–Pb isotopes. The Site U1431 MORBs of
the eastern sub-basin have mantle-like Mg isotopic compositions,
whereas the Site U1433 basalts of the southwestern sub-basin
have variable and higher d26Mg values than the normal mantle.
The distinctly heavy Mg isotopic signature of the Site U1433
basalts is consistent with that of arc remnants buried after Ceno-
zoic continental rifting at the Euro–Asian continental margin. Such
a high-d26Mg endmember is predominant in the upper SCS mantle,
and the normal-mantle Mg isotopic compositions of the Site U1431
basalts may be explained by contamination by materials with
sub-normal d26Mg values from the nearby Hainan plume. The Mg
isotopic compositions thus indicate that the compositional inho-
mogeneity of the SCS upper mantle results from both shallow-
and deep-level recycling, furthering the understanding of the dis-
tinct mantle evolutionary histories of the two SCS sub-basins.
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